standards of proficiency acknowledge that paramedics of the future are likely to consult patients in the virtual world [1]. As universities strive to meet this demand, they are often faced with placement capacity issues. Rising student numbers, staff retention issues and competition for placements from other healthcare students can make it extremely challenging to secure placements, especially in desirable areas such as primary care. Activity: The author, with the support from colleagues, was successful in obtaining funding from Health Education England to pilot a series of live virtual placement experiences, the first of which was successfully delivered on 20th April. On this date, 30 learners from our paramedic degree apprenticeship programme, in a classroom on our Lancaster campus, virtually attended a live clinic in a primary care setting in the south of England. The clinic was rigged with various cameras and microphones, with real patients consenting to being filmed.

The experience comprised of 5 patients, with the lead clinician providing a brief to the learners before each patient arrived for their consultation. Afterwards, the clinician would complete their clinical documentation before engaging in a two-way conversation with our learners and academic staff via Microsoft teams. Following the clinic, our apprentices had the opportunity to consolidate their learning via case study driven seminars which linked to the mornings experience.

Findings: Overall, student feedback was supportive, with the majority stating they found the experience enjoyable and engaging. The video stream of the placement was recorded for reuse in the programme's curriculum, and we hope that future live virtual placements will see other professions, such as physiotherapy and nursing, take part. Eventually, we want to develop the model for other disciplines and placement settings Conclusion: The academic team are looking forward to the second of three experiences, in May, with the view to contributing to the growing evidence base in this area, to reflect the value that we believe 'Live Virtual Placement' experiences have in the development of our future workforce. Ethics statement: Authors confirm that all relevant ethical standards for research conduct and dissemination have been met. The submitting author confirms that relevant ethical approval was granted, if applicable.

REFERENCES

 Health and Care Professions Council [Internet]. 2023 [cited 2023 Apr 29]. Available from: https://www.hcpc-uk.org/globalassets/standards/standards-of-proficiency/reviewing/paramedics---new-standards.pdf

DESIGN

A88

DESIGNING A MULTIDISCIPLINARY CHEST DRAIN COURSE

<u>Jane Doherty</u>¹, Eirini Kasfiki¹, Dave Wright¹, Andrew Blackmore¹; ¹Hull University Hospitals Trust, Hull, United Kingdom

Correspondence: janed@doctors.org.uk

10.54531/YFTD7067

Background and aim: In 2008 the National Patient Safety Agency reported 12 patient deaths directly related to chest drain insertion over a 3-year period. Since then there have been calls from publications highlighting the need for better education for clinicians [1]. Simulation has been shown to improve chest drain insertion technique [2], and multi-disciplinary simulation can encourage teamwork and communication skills [3]. Given that this procedure is an essential requirement for anaesthetic, intensive care, emergency medicine and internal medicine trainees, we decided to introduce a multi-disciplinary simulation course for the insertion of chest drains.

Activity: A basic needs analysis was carried out with stakeholders. Initially the course was designed to run for half a day, with a maximum of 12 candidates and a minimum of 3 faculty. A course timetable, course manual, equipment list and pre- and post-course feedback questionnaires were created. The course begins with a lecture, followed by three simulation-based workshops, which the candidates rotate between. These cover seldinger and surgical chest drain insertion, and the basics of chest ultrasound, using ultrasoundable chest drain manikins.

Findings: Feedback from the first course in July 2022 suggested that there should be a designated faculty team leader and healthy volunteers for the ultrasound workshop. We implemented this feedback and ran the course again in December 2022. Candidates were asked to rate their post course confidence at performing the procedure, with a score ranging between 1 and 7 (each number was assigned a qualitative value with 1 being unable to perform the procedure and 7 being extremely confident in performing the procedure). After the first course, the average score was 5 points. After the second, the average increased to 5.5. The course ran for a third time in April 2023, during which the duration of the workshops was increased and a lecture on aftercare was added. The average post course confidence score was 5.7. All candidates felt that the session fully met the learning objectives and would recommend the course to others.

Conclusion: After implementing changes to our course including assigning a faculty team leader, recruiting healthy volunteers, increasing the time spent in workshops and adding a session on aftercare, there has been an improvement in the candidates' average post course confidence at performing chest drains and qualitative candidate feedback was positive. We would recommend our course structure to others designing a chest drain course.

Ethics statement: Authors confirm that all relevant ethical standards for research conduct and dissemination have been met. The submitting author confirms that relevant ethical approval was granted, if applicable.

REFERENCES

- Maskell NA, Medford A, Gleeson FV. Seldinger chest drain insertion: simpler but not necessarily safer. Thorax 2010;65:5-6.
- Leger A, Ghazali A, Petitpas F, et al. Impact of simulation-based training in surgical chest tube insertion on a model of traumatic pneumothorax. Advances in Simulation 2016;1:21. https://doi.org/10.1186/s41077-016-0021-2.
- Stroud JM, Jenkins KD, Bhandary SP, Padadimos TJ. Putting the pieces together: The role of multidisciplinary simulation in medical education. International Journal of Academic Medicine 2017;3:104-9.

DESIGN

A89

PARAMEDIC PLACEMENTS: LET'S NOT FORGET THE NON-TECHNICAL SKILLS

Jess Spencer¹, <u>Carrie Hamilton</u>¹, Jess Rimmer², Channine Clarke²; ¹SimComm Academy, Romsey, United Kingdom, ²University of Brighton, Brighton, UK